Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase–AIF pathway

نویسندگان

  • Kin Pong U
  • Venkataraman Subramanian
  • Antony P. Nicholas
  • Paul R. Thompson
  • Patrizia Ferretti
چکیده

PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Expression of Apoptotic Genes in MCF-7 Can-cer Cells after Induction with Human Adipose Stem Cells Conditioned Medium and Rosemary Extract

Background: The effect of conditioned medium on apoptosis and invasion of MCF-7 is still debated. Carnosic acid, a component of rosemary extract, is also reported to have anti-cancer property. Therefore, we studied the occurrence of apoptosis through AIF-dependent pathway in MCF-7 cells treated with conditioned medium and rosemary extract by evaluating the expression of AIF, P53, Bcl-2 and Bax ...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

Involvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1843  شماره 

صفحات  -

تاریخ انتشار 2014